Grass species Differ in their effect on Phosphorus Runoff from Phytoremediation Harvest Strips in a South-central Florida ranchland

Haoyu Li, Amartya Saha¹, Alma Reyes², Dan Petticord³, Jiangxiao Qiu⁴, Jed Sparks³, Ran Zhi⁴, Elizabeth Boughton¹

¹Archbold Biological Station ²University of Miami, Miami, FL ³Cornell University, Ithaca, NY ⁴University of Florida, Davie, Florida

Introduction: Legacy P - harmful algal blooms in Lake Okeechobee and estuaries

Introduction: Legacy P continues to runoff downstream to Lake O and estuaries

Introduction: Solutions to limit further entry into lake O:

Nutrient Retention Reservoirs	Phytoremediation on ranches/farms
 wetland plant uptake, immobilization in decaying plant matter and sediment Capacity fixed can be a source if high rain or drought-drying 	forage uptake and actual use of P instead of storage

Methods: Phytoremediation study at Buck Island Ranch, Archbold Biological Station

Methods: Phytoremediation study LAYOUT

Objective of this presentation: Relate species strips to P in surfacewater runoff

Map of 3 replicate Phytoremediation and Control strips

Methods: Phytoremediation vegetation strips – SURFACEWATER SAMPLING

2 year study (August 2021- May 2023)

12 sampling stations in all Parameters: TKN, Nitrate and Total P (analyzed at UF/IFAS EWQL)

Stars : surface water sampling sites

Water flow in ditches – first order ditches. One sampling site per species strip Three replicates for strips -> 12 sampling sites total

Wet season_ weekly Dry season – bi-weekly (if water present) NO sampling if water depth < 10 cm

Results: Slide I - Overall

Average over 2021-2023 for all strips

lower P-runoff concentration in all vegetation strips as compared to control

Results: Slide 2 - P concentration and water depth in ditches

P concentrations decrease as the depth of water in ditches increase.

→ Likely a dilution effect

More pronounced in Bahia and Stargrass, suggesting higher P uptake by these species

Results: Slide 3 – high spatiotemporal variation in P-runoff concentration - challenge

C1_SW	Control	
C2_SW	Control	ARCHBOLD, DECENTION DANS
C3_SW	Control	
PS1_SWB	Bahia	PontrolStrip
PS1_SWL	Limpo	
PS1_SWS	Star	CantrolStrat
PS2_SWB	Bahia	
PS2_SWL	Limpo	
PS2_SWS	Star	Buck Island Ranch FDACS Project
PS3_SWB	Bahia	PlantStrea
PS3_SWL	Limpo	N Star
PS3_SWS	Star	Control Strip Treatment Type
		0 0.05 0.1 0.2

High variation within controls

Plot location effect could be bigger than species differences on runoff – even within 1 square mile. concentrations can vary spatially within/between ditches (vegetation, sediment) from differences in surrounding topography, point sources like dung/carcasses.

Results: Slide 4 – high spatiotemporal variation in P-runoff concentration – within the 3 control plots

Conclusions

- Species vegetation strips showed lower P concentrations in runoff as compared to controls (ungrazed Bahia pasture)
- Bahia and stargrass strips had a greater decrease in P concentration as ditches got fuller, as compared to limpo and control – maybe higher uptake

- Challenge high spatial and temporal variation observed in P-runoff concentration
- Flashiness of both discharge and concentration indicates the drawback of discrete sampling very easy to miss peaks in weekly samples.
- Hence the necessity of continuous monitoring however to date no accurate sensors available for P

References

2021_Kohmann et al_Nutrient Cycling in Agroecosystems_Farm-scale phosphorus budgets of beef cow-calf

Upcoming analyses

Species differences in leachate P concentration Species differences in biomass P uptake

